Effects of altering aminoglycoside structures on bacterial resistance enzyme activities.
نویسندگان
چکیده
Aminoglycoside-modifying enzymes (AMEs) constitute the most prevalent mechanism of resistance to aminoglycosides by bacteria. We show that aminoglycosides can be doubly modified by the sequential actions of AMEs, with the activity of the second AME in most cases unaffected, decreased, or completely abolished. We demonstrate that the bifunctional enzyme AAC(3)-Ib/AAC(6')-Ib' can diacetylate gentamicin. Since single acetylation does not always inactivate the parent drugs completely, two modifications likely provide more-robust inactivation in vivo.
منابع مشابه
The molecular basis of the expansive substrate specificity of the antibiotic resistance enzyme aminoglycoside acetyltransferase-6'-aminoglycoside phosphotransferase-2". The role of ASP-99 as an active site base important for acetyl transfer.
The most frequent determinant of aminoglycoside antibiotic resistance in Gram-positive bacterial pathogens is a bifunctional enzyme, aminoglycoside acetyltransferase-6'-aminoglycoside phosphotransferase-2" (AAC(6')- aminoglycoside phosphotransferase-2", capable of modifying a wide selection of clinically relevant antibiotics through its acetyltransferase and kinase activities. The aminoglycosid...
متن کاملAminoglycoside Resistance in Gram-negative Bacilli
Aminoglycosides are one of the clinically relevant antibiotics. They kill bacteria by binding to bacterial 30S subunit of ribosome. Resistance to aminoglycosides occurs by three different mechanisms: 1. Production of an enzyme that modifies aminoglycosides, 2. Impaired entry of aminoglycoside into the cell by altering the OMP permeability, decreasing inner membrane transport, or active efflux, ...
متن کاملScientists show that Resistance to Aminoglycoside Antibiotics is Due in Part to Target Mimicry
Bacterial resistance to antibiotics is a serious public health problem. The emergence of superbugs pathogenic bacteria that can survive the effects of most commonly used antibiotics significantly compromises existing treatments against infectious diseases. The predominant mechanism of resistance to aminoglycosides, a class of bactericidal antibiotics that are widely used in hospitals, is ...
متن کاملAminoglycoside resistance mediated by the bifunctional enzyme 6'-N-aminoglycoside acetyltransferase-2"-O-aminoglycoside phosphotransferase.
The expression of the bifunctional aminoglycoside inactivating enzyme 6'-N-aminoglycoside acetyltransferase-2"-O-aminoglycoside phosphotransferase is the most important mechanism of high-level aminoglycoside resistance in Staphylococcus and Enterococcus. The enzyme is unique because it presents two different aminoglycoside-modifying activities located in different regions of the molecule. The g...
متن کاملFrequency of 16S rRNA Methylase and Aminoglycoside-Modifying Enzyme Genes among Clinical Isolates of Acinetobacter baumannii in Iran
Background & objective: Multidrug-resistant Acinetobacter baumannii (MDR-AB) is an important nosocomial pathogen which is associated with significant morbidity and mortality, particularly in high-risk populations. Aminoglycoside-modifying enzymes (AMEs) and 16S ribosomal RNA (16S rRNA) methylation are two important mechanisms of resistance to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Antimicrobial agents and chemotherapy
دوره 55 7 شماره
صفحات -
تاریخ انتشار 2011